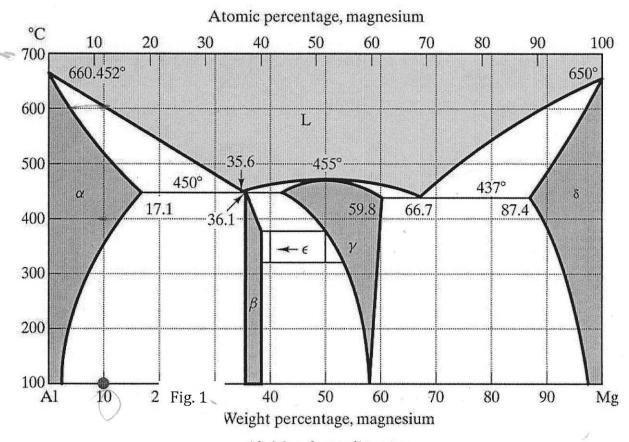
Exam Materials Science

(Applied) Physics
January 27 2015, 9:00-12:00

Clearly indicate your name and student number on each separate sheet of paper! Indicate on the first sheet the total number of papers you hand in.


Mark for the exam = 1 + (sum of total points scored / 8.5)

Suggestions:

- When you have difficulty to find an answer and to formulate it, do not keep on thinking for a long time, but move to the next question. Then, come back to this (skipped and unanswered) question later (when you still have time).

- Answer concisely: For all questions it is possible to write down the answers in not more than a few sentences.

Exercise 1 (17 points)

Al-Mg phase diagram

For aerospace applications aluminum alloys are popular construction materials, because of their excellent combination of mechanical properties and low density (weight). For the first part of this exercise (a-d) we consider an Al-Mg alloy with 10 weight-% Mg (see Fig.1).

- a. This alloy is cooled down from 700 °C. At which temperature is the first solid phase formed (in the liquid)? What is the weight-% Mg in this first solid phase? (2 pt)
- b. At which temperature will the last liquid disappear? What is the weight-% Mg in this last tiny bit of liquid? (2 pt)
- c. Compute with the lever rule the fractions of the (various) phases that are present in this alloy with 10 wt-% Mg at 400 °C and 200 °C. Show how you obtain your answers. (3 pt)
- d. What structure do you normally expect (instead of words you can also sketch it with proper indication of the phases!) in this alloy with 10 wt-% Mg after cooling to 100 °C? (2 pt)
- e. The Al-Mg phase diagram shown above indicates that aluminum-rich alloy can be strengthened by two different methods. Describe concisely (but completely) these 2 methods, i.e. how the strengthening can be executed in practice and explain why the aluminum becomes harder and stronger. (4 pt)
- f. Al(uminum) has a face centered cubic (fcc) crystal structure, Mg a close-packed hexagonal (cph) structure. Write down, using crystallographic notation, what are the close-packed planes and directions in both structures and how many independent combinations of close-packed planes and directions, i.e. slip systems are possible in both structures. (4 pt)

Exercise 2 (17 points)

A thin coating of TiC is deposited (with Chemical Vapour Deposition) at 700 °C on a steel substrate surface, with dimensions 0.200 x 0.200 m². Due to the difference in linear thermal

expansion coefficient of the film and the substrate, respectively 5 10⁻⁶ K⁻¹ and 12 10⁻⁶ K⁻¹, stresses do arise in the film at room temperature (20 °C). Approximately no significant stresses develop due to cooling in the steel. Then this material system is loaded in a construction in such a way that the edges of the square surface elongate 0.2 mm. The Young's Moduli of TiC and steel are 449 en 212 GPa, respectively and their Poisson ratio's are 0.19 and 0.29.

- a. What could be useful reasons to coat steel with TiC? Mention at least two. (2 pt)
- b. What value of (total) stress is present in the TiC film and what value in the steel? (5 pt)
- c. Are the stresses that develop due to cooling in the film in general favourable or unfavourable? Motivate this choice. (2 pt)
- d. The stresses in the steel are raised beyond its yield strength of 550 MPa. Explain what will happen in the steel on a microscopic scale. Discuss the role of planes and defects in the crystal (lattice) and the influence of grain boundaries. (3 pt)
- e. Different modifications of steel are present. Steel plate in cold rolled and recrystallized condition and both present with 0.3 or 0.45 wt.% C. Which one of these 4 types of plate has the highest yield strength?; explain why. (2 pt)
- f. Ceramics are always less ductile than metals. Why is this so? Explain why this has a large impact on the 'fracture toughness' (K_{Ic}) of metals and ceramics. (3 pt)

Exercise 3 (14 points)

- a) Based on only carbon atoms different materials (i.e. where the atoms are packed in different structures) can be produced. Give the names of three different carbon-based materials/structures and shortly describe how the C atoms are packed (mutually coordinated) in these 3 structures. (3 pt.)
- b) In ceramic materials, based on ions, the mutual coordination of the cations and anions is determined by their relative ion radii, rC and rA, respectively. Compute the *maximum* value of rC/rA that holds in case of a 2-fold surrounding of anions around cations. (3 pt.)

PVC has a monomer mass of 62.5 g/mol. A PVC polymer appears to have the following (simplified) distribution of molecular masses: 30000 g/mol occurs for 40% of the number of molecules, 40000 g/mol for 30%, 50000 g/mol for 20% and 60000 g/mol for 10% of the number of molecules.

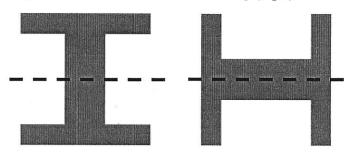
- c) What is the number average molecule weight (expressed in g/mol) of this PVC? (2 pt.)
- d) What is the weight average molecule weight of this PVC? (2 pt.)
- e) Natural Rubber or polyisoprene has its glass transition at -40 °C. PVC has it at 100 °C. Which of the two materials has a higher stiffness (Young's modulus) at room temperature? Give an estimate of the difference in Young's modulus. Give also estimates of the maximum (fracture) strains (%) that can be achieved at room temperature in polyisoprene and PVC. (4 pt.)

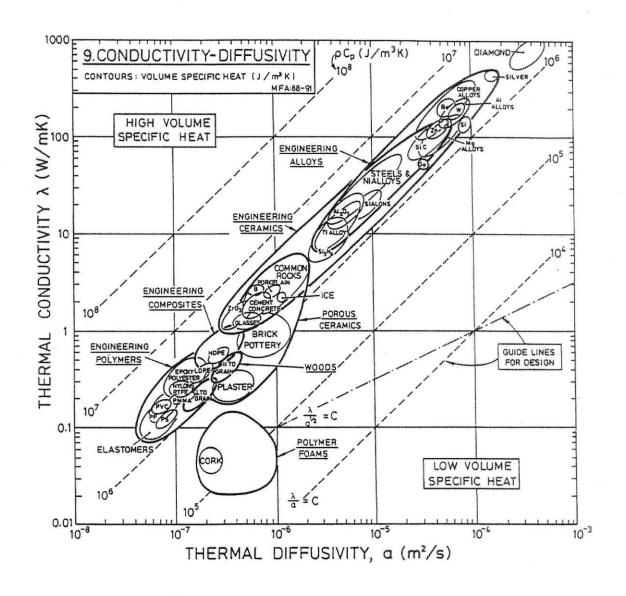
Exercise 4 (16 points)

- a) The temperature dependence of the electrical conductivity is totally different for metals and semiconductors. Explain in a few sentences why this is the case, including at least factors as bandgap, number of free charge carriers, charge carrier mobility. (4 pt)
- b) When we shine visible light on a semiconductor its electrical conductivity can significantly change. This can be nicely used in sensors. Explain if the conductivity increases or decreases and explain why the conductivity changes. (2 pt)
- c) Titanium has a conductivity at room temperature of about $2.5 \times 10^6 (\Omega \text{m})^{-1}$. It is applied in an aircraft where it can become relatively hot: 475 °C. Compute approximately the

- conductivity of Ti at this temperature? Explain why this change in conductivity occurs. (3 pt.)
- d) We have two samples of InP which are different types of semiconductors. Sample 1 is produced with perfect crystal structure and in sample 2 on average for each 10^7 crystal unit cells (lattice parameter of the cell a_{InP} =0.586 nm) 1 In atom is replaced by 1 P atom (see periodic table below). What type of semiconductor is sample 1 and what type is sample 2? Explain your answer (3 pt.)
- e) The mobility of electrons $\mu_e=0.50~\text{m}^2/(\text{Vs})$ and of holes $\mu_g=0.015~\text{m}^2/(\text{Vs})$. The unit charge = 0.16 10^{-18} C. Compute the conducticity of sample 2 when it is in the extrinsic (exhaustion) regime. (4 pt.)

1	,																18
H hydrogen coor, cook	2		Key:		1	UPAC	Perio	dic Tal	ole of	the Ele	ement	13	54	15	16	17	He belon 4.000
3 Li Ithium prose, e eer	Be beylium		Symbo	ol						4		5 B toon (10.80, 12.83)	6 C cartion [12.00; 12.00]	7 N reinigen [94.00;14.01]	O carygen	9 F tuorine	No more posts
Na sodum 2299	Mg magnesions 2431	3	4	5	б	7	8	9	10	11	12	13 Al aluminium 26.98	Si silcon pa de; pa daj	15 P phosphorus scar	16 S sulfur pates, so ces	17 CI chlorina (35.44;35.49)	Ar Ar argor
19 K potastium 30:10	Ca catition 4004	21 Sc scandum 4496	TI Statum 4787	23 V variadizm sp.s4	Cr chromium sp.co	25 Mn magaman san	Pe Fe ion scas	CO cotat sesso	28 Ni nickel sees	Cu capper ss.ss	30 Zn zinc 65.30(5)	31 Ga gallium #12	32 Ge gernanium 77.65	AS arsanic 7480	Se sammium rasasas	35 Br tramine 7890	36 Kr krypa saas
37 Rb rubidum	38 Sr strontum 47.42	39 Y ytidum 6491	Zr zmomum	Nb notion	MO moyodenum se sept	43 TC bohnedur	Ru rubevan	45 Rh shodum	Pd palatum	Ag stoer x07.9	48 Cd cadmium	In Indian	_ 50 Sn sn ns7	Sb animony 1018	Te selluriors s27.4	53 [bdina 126.4	54 Xe xxxxxx
CS Genum	Ba benum	57-71 terthemoids	Hf hahum	Ta tantatum	74 W tangsian	75 Re thenium	76 Os osmiom	77 Ir Moun	Pt philmum	79 Au gold 197.0	Hg menuny	81 TI tialium (2043, 2044	Pb	Bi bemuth	Po polonium	At ustatine	Rr rado
87 Fr transium	88 Ra	60-103 400/00/de	104 Rf nithefordum	Db dutnium	106 Sg seatorgium	107 Bh boltrium	108 Hs hassian	109 Mt moltrerium	DS darmetacklure	Rg roantgenium	112 Cn copunicam		FI FI Necessary		116 LV tvermorium		
		57 La lasthurson 1945	Ce certum 1401	59 Pr Presendymum secu	EG Nd neodymoun 1442	61 Pm promethum	62 Sm samaturi 904	Eu Bucham	Gd gudalmum wr.4	65 Tb betave	B6 Dy dyspresium	Ho holesule	68 Er enten enten	59 Tm Pullim 1689	70 Yb ydatus 93.1	71 Lu umlun irsii	
		AC action	Th	Pa proposition	U U uranium bian	Np replacem	şq Pu putunum	Am Am	≫ Cm	97 Bk	98 Cf calleroun	ES ensurum	Fm Seman	Md	NO retelan	103 Lr lawfarecom	


Exercise 5 (13 points)


In the figure below a so-called Ashby map is shown, in which the *thermal conductivity* is plotted against the *thermal diffusivity*.

- a. Which materials in the Ashby map provide the best thermal isolation of a refrigerator (which is continuously cooled and thus creates a steady-state condition)? Motivate your answer. (2 pt)
- b. Which materials in the above Ashby map provide the best thermal isolation of a cooler box (that as a function of time will gradually heat)? Motivate your answer. (2 pt)
- c. With an optimal design of an axis loaded in torsion not only the material properties are important, but also the shape of the cross section plays an important role (where the shape is uniform along the length of the axis). The twist (rotation angle caused by the torsion) θ in the axis is quantified by: θ =(Tl)/(GJ), with T the torque applied to the axis, I its length and G the shear modulus of the axis material (assume G=0.4E with E the Young's modulus). J is the angular momentum of the axis which is defined by: $J = \int r^2 dA$, with dA infinitesimal small area elements and r the distance of these elements with respect to the centre of rotation in the axis. The shape-factor is defined by: $\phi_T^e = 2\pi J/A^2$ with A the total area of the material in the cross section. Derive the 'performance'-function for the axis loaded in torsion with a variable shape-factor. The weight has to be minimized

(weight is thus the performance) and the requirement of the design is that the twist within the axis should not exceed the value θ_M for a torque T_a . (4 pt.)

- d. The shape factor for bending is defined as $\phi_B^e = 4\pi I_{xx}/A^2$ with $I_{xx} = \int y^2 dA$ with y the distance to de bending axis. We have a H and an I profile (with identical cross-sectional areas); their cross sections are shown in the figure below. The bending axis is horizontal in the center of the profiles. Explain by proper qualitative reasoning which one of the two profiles has a larger shape factor and thus performs better in case of bending (2 pt.)
- e. Explain (e.g. by using one or a few examples comparing different materials) why shape factors have an important influence on the selection of the best materials that can be loaded safely by torsion or bending and where the design goal is to minimize weight (mass). (3 pt.)

